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I. INTRODUCTION

The space environment is known for its extremely hazardous
conditions for astronauts and resulting from this, requires the
highest demands for safety and security. Current designs for
human space flight avionics systems are traditionally very
conservative. This is generally not an issue as astronauts are
present all the time to monitor and control the spacecraft.
However, new types of spacecraft (e.g. Deep Space Gateway,
Missions to Mars) require much higher levels of autonomy,
which often cannot be reached with traditional designs. Fur-
thermore, much computing power and power consumption is
needed to run the computationally expensive tasks required to
reach such high levels of autonomy, which is a major challenge
for on-board systems in contrast to on-ground systems.

This challenge also applies to upcoming space missions that
will additionally rely on the support of robotic control and
artificial intelligence, for instance to explore the moon with the
European Large Logistics Lander EL3 [1]. Existing projects
like the International Space Station ISS are subject to constant
evolution as well, as seen in the Bartolomeo [2] extension of
the European Columbus Module, which provides additional
opportunities to explore automated in-space assembly via
robotic factories performed in the PERIOD [3] project.

For all of these next generation space missions, multi-core
platforms and software systems are the key enabler. A safe and
secure architecture relies on strong separation of concerns in
this environment with mixed criticality tasks consisting of vital
bare metal real time spacecraft controls, telemetry and ground

communication tasks, up to computationally intensive image
processing by artificial intelligence algorithms and neural
networks.

In this paper we present an Airbus-designed system ar-
chitecture that builds on the multi-core platform which is
being developed in the project SELENE [4]. The platform
is a RISC-V multicore system with FPGA-based hardware
acceleration of artificial intelligence inference processes and
built-in support for mixed-criticality tasks exploiting both
the hardware partitioning capabilities of the platform for
timing interference and the spatial partitioning and isolation
capabilities of the Jailhouse hypervisor. Based on this, the
Airbus system architecture places a particular focus on mixed
criticality and artificial intelligence tasks for robotic use cases,
which are seen to be representative for a broad range of
potential applications in space.

II. SELENE COMPUTING PLATFORM

The SELENE System-on-Chip (SoC) is depicted in Figure
1. This SoC comprises a NOEL-V multicore RISC-V system.
Each NOEL-V core has private L1 instruction and data caches
and is connected to an Advanced High-performance Bus
(AHB) to a shared L2 cache, forming a General Purpose
Processing (GPP) element. The GPP and the AI acceleration
subsystems are interconnected by an AXI high-speed inter-
connect. The SELENE SoC is highly configurable and for the
demonstration platform, a versatile six-core system has been
chosen.
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Fig. 1: Baseline SELENE SoC architecture.

With a single GPP element, coherency between all cores is
handled by the L1 caches in the GPP element. Furthermore,
the IO subsystem is connected through an IOMMU directly
to the internal bus of the GPP element, thereby providing
coherency between the IO peripherals and the processor cores.
This structure can be changed at a later stage in the project.

The SELENE platform relies on Linux as the default
operating system. In particular, it is using a Debian-based
RISC-V Linux adaptation to NOEL-V that can be found at
https://github.com/siemens/isar-riscv/. The integration of the
artificial intelligence software toolchain is built on top of this
Linux distribution.

III. AI FRAMEWORK

The SELENE AI framework uses the European Distributed
Deep Learning Library (EDDL) library [5] to train neural
network models and to perform the inference process of
already trained neural network models. Below, we describe
the main elements of this framework in the context of the
SELENE platform.

A. AI Models deployment

The EDDL is a general-purpose open-source deep-learning
library [5] and it is the library we use to deploy AI models on
the SELENE platform. The EDDL can also be used to train the
neural network models. However, we support the deployment
of pre-trained models that were exported using the ONNX
format to ensure the compatibility with existing workflows
and other frameworks.

In the SELENE platform, the EDDL runs on top of the
Linux OS deployed in the NOEL-V processor, as presented in
Figure 2. Thus, the inference process can be executed entirely
in the NOEL-V multicore system. To speed up the inference
process the SELENE AI framework allows offloading heavy
computations to the SELENE AI hardware accelerators. A
low-level runtime achieves this task and guarantees that the
SELENE AI hardware accelerators can communicate with
the EDDL. In particular, the runtime ensures that low-level
constraints are met, such as memory allocation, translation,
and interrupt handling. The SELENE Linux image integrates

the EDDL and the low-level runtime. The final application
running on the NOEL-V processor infers the AI algorithms
and allows the user a transparent use of the accelerators.
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Fig. 2: The SELENE AI framework

Fig. 3: HLSinf High-level Architecture

B. HLSinf Accelerator

The default AI hardware accelerator of SELENE is HLSinf.
This accelerator is an open-source project designed in High-
Level Synthesis for inference processes of neural network
models based on convolutions [6]. Thus, this accelerator is
especially well suited for SoCs including embedded FPGAs
or systems including FPGA devices. However, the use of tools
like Catapult HLS [7] also enables using this accelerator for
ASIC targets. HLSinf implements the channel slicing concept
since the accelerator takes a set of channels as input in parallel
and produces a set of channels as output in parallel. The
channels per input (CPI) define the input speed up, and the
channels per output (CPO) define the output speed up. The
accelerator allows configuring the value parameters to adapt
the accelerator size and parallelism to the desired use case.

Figure 3 shows the current design of the HLSinf accelerator.
As we can see, HLSinf currently supports several functions
such as convolution, ReLU, leakyReLU, STM (an aggregation
of softmax, hyperbolic tangent, and element-wise multiplica-
tion), element-wise addition as well as pooling operations.
HLSinf can be customized in several dimensions. First, we
can define the operations to support at design time. More
specifically, the HLSinf allows defining the convolution algo-
rithm among three alternatives: direct convolution, Winograd
algorithm, and depthwise separable convolution. In the second
dimension, the accelerator data type and precision format
can be customized. Currently, the accelerator supports single-
precision floating-point format (FP32), fixed-point formats and
integer formats. Finally, in the third dimension, the input



Fig. 4: Input image and key point prediction heatmap from
Convolutional Neural Network.

speedup and the output speedup can be defined to adapt the
accelerator size and parallelism.

IV. HUMAN SPACE FLIGHT

Airbus is part of Europes long-lasting history of empower-
ing humankind to explore space. The architecture described
in this paper represents a generic Robotic Servicing Module
(RSM), which forms the basis for multiple space-related
domains, including intravehicular robotics, on-orbit servicing
[8], in-space assembly [9] [10] and space-debris removal
[11]. The platform contains four mixed-criticality tasks on
its separate cores - management, robotic arm control, LIDAR
based navigation and robotic visual pose estimation with the
dedicated FPGA AI acceleration unit. SpaceWire and CAN
Bus interfaces are used to access simulated camera and LIDAR
sensor data, a TCP/IP Ethernet connection for each core serves
the exchange of telemetry and telecommand data to the Test
Bench, which is used for evaluation of the platform.

A. AI-based Visual Pose Estimation

To quantify if the SELENE platform is capable of increasing
the computational power compared to current space-grade
equipment, particular emphasis is placed on the AI-based
visual pose estimation as benchmarking application. In this
task, the platform will receive camera images containing a rep-
resentative payload in the form of a CubeSat via the SpaceWire
interface from the Test Bench. They are fed into the pose
estimation algorithm, which applies a hybrid AI approach,
comprising a two-stage pipeline to estimate the satellites pose.
First, it derives key point locations on the satellites surface
from the images via the inference of a Convolutional Neural
Network, which predicts the key point location via probability
distributions, so-called heatmaps (Figure 4).

Afterwards, a non-AI Perspective-n-Point algorithm maps
the detected two-dimensional key point locations onto a priori
known positions of the key points from the 3D satellite model,
resulting in a 6D pose estimate, translation and rotation. The
approach is visualized and described in Figure 5 and Figure 7.

B. Convolutional Neural Network

The Convolutional Neural Network is responsible for the
extraction of key point locations via heatmaps. It makes

Fig. 5: Multi-stage process to estimate the pose of a given
input image.

Fig. 6: Key point locations on virtual payload satellite structure

predictions on the AI accelerator of the multi-core SELENE
platform. The neural networks architectures for the use case
originate in human pose estimation but were demonstrated to
be applicable to objects as well [12] [13] [14]. Also, the hybrid
approach via heatmaps and a subsequent classical algorithm
has been widely explored [15] [16] and was often found more
accurate than directly regressing a pose from images [17] [18].

In the project Manipulation and Tool Operations for On-
Orbit Servicing (MANTOS), Airbus identified two potential
architectures that are suited for the use case of satellite
pose estimation - the HRNet [13] and Stacked Hourglass
network [14]. Their common characteristic is a encoder-
decoder structure in the network which extracts semantically
rich features before upsampling to a higher resolution for the
final heatmaps. To retain spatial accuracy in the output, the
Stacked Hourglass uses direct transfers of the input to the
output data (skip connections), while the HRNet keeps high
resolution branches throughout the network. Both architectures
were investigated with an artificial dataset that was created
using a virtual payload model in the form of a CubeSat shown
in Figure 6 and rendering techniques described in [19]. The
SELENE benchmarking task makes use of the dataset and
model architectures to apply the use case to the multi-core



Fig. 7: Hybrid AI approach with Convolutional Neural Network and Perspective-n-Point Algorithm.

RISC-V platform.
For inference, the European Distributed Deep Learning

Library EDDL was chosen as the main hardware acceleration
library for inference on the RISC-V SELENE platform by
the consortium [20]. A big advantage of the framework is
the support for the Open Neural Network Exchange (ONNX)
format, which enables framework interoperability, for instance,
between training and inference of models [21].

C. Evaluation

The benchmarking of the SELENE platform with AI-based
pose estimation requires an evaluation strategy to generate
comparable results. Therefore, test cases have been identified
by Airbus that ascertain repeatability of test runs and their
results.

After testing the general feasibility, a test of effectivity,
i.e. a stress test, is foreseen. The platform receives images
as fast as it can process them and reports the results to the
Test Bench. Execution time-related metrics will be collected
and documented. Next to the speed of inference, the accuracy
is monitored closely to ascertain results with integrity. In a
preliminary study, it was shown that an EDDL-trained model is
able to achieve a similar accuracy compared to a Keras-trained
network with the same architecture, however at the expense
of being slower in training and inference in the same GPU
environment [21]. An important accuracy metric that focuses
on the first stage in the hybrid AI approach is the percentage
of key point predictions that have an Euclidean distance of
smaller than 1px to the true location, called predictions with
sub-pixel accuracy.

The test runs are planned to be repeated in different hard-
ware configurations of the platform. Moreover, modifications
to the neural network (in terms of network size, quantization
etc.) will reveal if significant changes in performance can be
achieved.

V. CONCLUSION

As a mixed-criticality system, the SELENE multi-core
platform provides the opportunity to maximize its efficiency
while respecting and meeting safety- and security-critical
requirements. It uses strong isolation capabilities at hardware

and software level for an optimal separation of concerns.
Also, it provides the infrastrucutre to speed up the inference
process of machine learning models significantly using the
custom library EDDL, a low-level acceleration runtime and
the HLSinf open-source FPGA accelerator. Those components
will provide the foundation of a multi-core system capable
of handling computationally expensive tasks, especially the
inference of neural networks.

Using the SELENE platform, Airbus presents a system
architecture that will serve as a basis for future mission on-
board data processing with a special focus on mixed-criticality
tasks and robotic automation with the help of artificial intelli-
gence. As next step, Airbus will continue the integration of the
use case to the SELENE platform to be able to validate the
platform in practice and obtain evaluation results. For this,
the detailed evaluation approach will offer a comprehensive
benchmarking against current space-grade equipment and will
indicate with its results how compute-intensive tasks like
neural network inference for image processing will be feasible
on spacecrafts in the future, broadening the range of potential
on-board applications significantly. It can therefore be seen
as a step towards highly autonomous spacecraft operations in
future human space flight missions.
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Introduction

▪ Multi-Core platforms as
key enabler

▪ Mixed-criticality execution

▪ Safety and Security + High 
Performance Capabilities

▪ SELENE: RISC-V Multi-
Core platform w. AI 
hardware acceleration and
hypervisor
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Computing Platform

▪ 6 NOEL-V RISC-V cores

▪ AI Hardware accelerator

▪ Linux as the default OS
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SELENE SoC



AI Framework

▪ Use of EDDL (European Distributed Deep Learning Library):

▪ General-purpose, open-source deep-learning library

▪ Used for training and inference processes

▪ Offloads heavy computations to the accelerator

▪ Executed in the SELENE 64bit RISC-V cores 

▪ Supports ONNX format

H2020 SELENE 6



HLSinf Accelerator

▪ High-Level Synthesis open-source project

▪ Uses Channel slicing

▪ Modules connected with streams building a dataflow model
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CPI = channels per input 
CPO = channels per output



HLSinf Flexibility

▪ First dimension: type of 
operations to be supported

▪ Second dimension: data 
types and precision formats

▪ Third dimension: input 
speedup and output speedup.
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CPO = channels per output



Human Space Flight
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▪ Housekeeping

▪ Robotic Control of
simulation

▪ LIDAR Navigation

▪ AI Pose Estimation

Intravehicular
Robotics

On-Orbit 
Servicing

In-Space 
Manufacturing

Space-Debris 
Removal



AI-based Pose Estimation
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▪ Input: Camera Images of representative payload (e.g. CubeSat)

▪ Convolutional Neural Network detects key points via heatmaps, i.e. 
probability distributions

▪ Detected key points combined with 3D payload model
in Perspective-n-Point algorithm

▪ Classic Computer Vision algorithm: Hybrid AI approach



Convolutional Neural Network

H2020 SELENE 11

▪ CNN prediction: Key point location

▪ Architectures from Human Pose 
Estimation

▪ Encoder-Decoder architectures

▪ High-Resolution branch vs. Skip 
connections

▪ European Distributed Deep Learning 
(EDDL) library as inference framework

▪ Support for .ONNX Neural Networks

[4]

[5]

HRNet

StackedHourglass



Evaluation

▪ Artifically rendered data set for Benchmarking

▪ Accuracy metric: Euclidean distance of true and predicted key
points

▪ Execution time comparison between SELENE configurations, 
network types, sizes etc.
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Conclusion

▪ SELENE: Performance & Safety/Security

▪ AI acceleration with EDDL and HLSinf FPGA 
accelerator

▪ Airbus system design as basis for future on-
board mission scenarios in robotic use
cases

▪ Next steps
▪ Integration continued in SELENE

▪ Completed with detailed benchmarking against
current space-grade equipment
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