Empirical Analysis of the Specialization of a
Diversity Metric per Circuit Path

Sergi Alcaide®T, Carles Hernandez*t, Jaume Abella
"Barcelona Supercomputing Center (BSC)
¥ Universitat Politécnica de Catalunya (UPC)
* Universitat Politécnica de Valencia (UPV)

Abstract—Diversity can be obtained by using different imple-
mentations of the same hardware functionality and can be applied
at different abstraction levels (e.g., gate level, transistor level).
However, although diversity is well-understood at a qualitative
level, it is hard to quantify it since it relates to the specific target
that creates the common cause fault and the abstraction level at
which it is considered. In this paper, we analyze the behaviour
of a diversity metric based on circuit path analysis in the context
of systematic fault patterns.

I. INTRODUCTION

Safety-related systems must undergo an exhaustive val-
idation and verification process before being deployed to
prove that their safety goals are met. This process needs
to collect enough evidence to prove that either the risk of
death or serious injury to people, the loss or severe damage
to equipment/property and/or the environmental harm due
to the system’s malfunctioning behavior can be regarded as
negligible. Therefore, a hazard analysis and risk assessment is
needed for safety-related systems to determine the degree of
prevention or mitigation needed in order to avoid unreasonable
risk.

These safety goals are defined at the scope of the whole
system, but also they are propagated to all the components, so
their composition preserves the safety goals. This translates
into attaching to each component a Safety Integrity Level,
which determines the type and amount of evidence needed
in the verification and validation process to prove that the
component under analysis will meet its specifications.

When mapping safety integrity levels to hardware compo-
nents such as microcontrollers, meeting the requirements for
high integrity levels requires providing hardware components
with specific safety mechanisms. For instance, in the context
of the automotive domain, microcontrollers providing Auto-
motive Safety Integrity Level (ASIL) C and D functionalities
often require some form of hardware redundancy [1], [2].
Although redundancy is very useful against most faults, it is
vulnerable to faults that can produce the same failure on each
of the system’s instances (e.g., due to voltage droops). This
type of failures are often produced by common cause faults
and need, not only redundancy but also diversity, so that the
manifestations of the fault are different in each diverse instance
and hence, the fault can be detected before becoming a failure.

Diversity can be obtained by using different implementa-
tions of the same hardware functionality and can be applied

at different abstraction levels (e.g., gate level, transistor level).
However, although diversity is well-understood at a qualitative
level, it is hard to quantify it since it relates to the specific
target that creates the common cause fault and the abstraction
level at which it is considered. Pionnering efforts to quantify
diversity systematically have only been proven successful for
random faults [3], [4].

DIMP, a diversity metric based on circuit path analysis, was
proposed in [5]. While this metric provides interesting prop-
erties in terms of computational complexity and simplicity, it
has only been proven under very specific scenarios [5]. In [6]
DIMP was compared against other diversity metrics. Authors
in [7] used DIMP in their evaluation because of the low-cost
compared with other diversity metrics. Also, in [8] authors
create different VLSI designs from the same C source code
and evaluate their diversity using DIMP.

In this paper, we thoroughly evaluate the behavior of DIMP
in the context of systematic fault patterns, by modifying
the original metric in order to specialize it to this specific
fault model. For this, we considered a subset of gates to
be more susceptible to faults and required a distinctive treat
during the diversity calculation. Later on, after not achieving
to pair the specialized DIMP with the results from a fault
injection campaign, we analyzed our specialized DIMP met-
ric to identify the elements that could interfere. With this,
we identified possible aliasing within the metric, which we
corrected. Unfortunately, the final metric still did not provide
the expected results.

II. A DIVERSITY METRIC BASED ON CIRCUIT PATH
ANALYSIS

Using space redundancy protects systems against transient
and permanent faults. However, protection against the particu-
lar case of common cause faults is not provided. Common
cause faults can either be permanent or transient, but the
characteristic that defines them is that affect multiple instances
inside our redundant system. Therefore, if instances inside
the sphere of replication (SoR) are affected simultaneously
and identically, redundant elements will produce the same
erroneous outputs, and the output comparator will not detect
the errors, leading to a system failure.

In order to protect systems against common cause faults,
diversity must be used across the different instances inside
the SoR. Recently, DIMP, a diversity metric based on circuit

path analysis, was proposed to cover this gap. DIMP offers
a systematic mechanism to quantify diversity, thus improving
system robustness against common cause faults.

A. Rationale behind DIMP

DIMP is built on the idea that lack of diversity occurs when
starting a signal from an input pin (/;) and traversing through
the path until we reach an output pin (O;), the devices that the
signal goes through are similar. Therefore, in order to quantify
diversity we must consider the traversed devices from a given
input to a given output, also called a path. The comparison
must be made on paths with the same input and output since
they are carrying out the same functionality.

Once all irrelevant parts of the circuit have been filtered
out, and the devices traversed to get from I; to O; kept,
we can perform the comparison. Before, we must consider
putting weights in each path to reflect the importance of each
path in the manifestation of the given fault. For instance,
if we consider the timing faults, longer paths can be more
susceptible than shorter paths. Then, one may consider that
the shorter paths are less likely to induce erroneous outputs
and be less relevant than longer paths. In that case, we can put
a small weight in paths that are shorter than a given threshold,
for example.

B. A realization of DIMP

1 DIMP =0

2 MaxDIMP =0

3Fori=1to N

4 Forj=1to M

5 Paths} ; = J (Paths (I},0}
6 Pathsij = (Paths (12, 0]2
7 While Paths} ; # 0 and Paths; ; # 0 do
8 Take p}, € Paths%j and p? € Paths? ;

, i,j
with highest overlap(pi,pl?)

9 DIMP = DIMP + weight(p}c,p%) . (1 — overlap(pllc,p?))
10 MaxzDIMP = MaxDIM P + weight(p;, p?)

11 Remove pl,lC from Pathsll,j

12 Remove p? from Paths?,]-

13 Endwhile
14 RemainingPaths; j = Paths%j U Pathsf].
15 While RemainingPaths; j # () do

16 Take any p, € RemainingPaths; ;

17 DIMP = DIMP + weight(pq, 0)

18 MaxDIMP = MaxDIM P + weight(pg, 0)
19 Remove p, from RemainingPaths; ;

20 Endwhile

21 Endfor

22 Endfor

23 Return 7MaDzIDMII;1P

Fig. 1: Pseudocode of a realization of DIMP.

A particular realization of DIMP was proposed in [5]. This
realization is intended for fault types like voltage droops,
residual faults escaping diagnosis coverage, and permanent
faults in the root of the power network of the circuit instances.
Pseudocode of the realization is shown in Figure 1.

To implement this realization, we first initialize the two
main values, DIM P and MaxDIM P to 0. As we will iterate

over the designs, DIM P will be the diversity value, while
MaxDIM P will be the maximum possible value of diversity.
The loops at lines 3 and 4 stand for the number of inputs
(N) and the number of outputs, (M). First, we will group
all the paths for each pair < I;, O; > separately, lines 5 and
6. Since we work at the gate level, the devices correspond
to all gates that traverse from the input to the output. Then
Paths; ;» stands for all the paths from circuit 1 that traverse
from input % to output 7, and each path consists of an ordered
list of gates.

Once all the paths are grouped in sets, we will iterate over all
the sets (line 7). Given a pair < I;, O; >, we will have paths
from circuit 1 and paths from circuit 2; we will select the pair
of paths, one for each circuit, that has the highest overlapping.
We define overlap(p}, p?) as the number of gates that repeat
across paths in the same order, even if some other gates are
interleaved. This is a problem known as LCS [9] (Longest
Common Subsequence problem). We divide the value by the
total number of gates in both paths; otherwise, the longer paths
will easily have high values instead of shorter paths that are
similar.

For instance if pi = {NAND2,NOR2, NOT, XOR2}
and p? = {NAND2,NOR2, XOR2}, see figure 2 then
{NAND2,NOR2,XOR2} will be the longest common
subsequence and the overlap(pl,p?) = 6/7, since 6 gates
repeat in both paths out of 7 total gates. Other definitions of
overlap(py,, p?) are possible.

NOT

NAND2Z NOR2 XOR2

(a) Example p}.

NANDZ NOR2 XORZ2

(b) Example p?

Fig. 2: Small example: {NAND2, NOR2, XOR2} is the
solution of LCS

Because DI M P variable is the diversity value, we increase
DIMP with the non-overlap (line 9), which is subtracting
from 1 the value of the overlapping, and then we multiply
it with the relative weight (weight(p},p?)) of those paths.
Since we target timing, we define weight(p;,p?) as the
maximum gate count of those paths. Other considerations

of weights can be employed according to the fault model
being selected. MaxDIM P is also increased with the relative
weight (line 10), but as we explained, MaxDIMP is the
maximum potential value of diversity, so accordingly, we have
0 overlapping in all the cases. Then we remove the paths
considered from the sets in lines 11 and 12. We continue
evaluating and subtracting paths from the sets until one of the
sets is empty. If the other set is still not empty, we consider the
rest of the paths of the non-empty set as 0 overlapping (fully
diverse) paths because we cannot compare against any other
path from the other circuit. Once we iterate over all the sets,
we will have the DIM P and MaxDIM P value computed.
Finally, at line 23 we return the diversity value as the division
of the circuits’ diversity (DIM P) divided by the maximum
potential diversity (M axDIM P).

Notice that in the case of two identical circuits, the over-
lapping will be 1 in all the cases, leading to a value of
DIMP = 0 and leading to O diversity. On the other hand,
having two completely different circuits (e.g., one imple-
mented with NOR gates and the other with NAND gates)
will have a 0 overlapping in all the cases, which will lead
to DIMP = MaxDIMP and resulting in a diversity of 1.

III. DIMP SPECIALIZATION

To understand how DIMP behaves when we tailor this
metric to the faults caused by systematic defects, we define
an appropriate fault model. For this model, we consider
some gates are more vulnerable to certain conditions — such
as magnetic fields or voltage droops — than others due to
the impact of systematic process variations. Therefore, we
assume that only some gates are affected by faults during
the simulations, while all other design parts are fault-free. To
model this, we will only inject faults to the selected gates. As a
system model, we assume a hardware redundancy + diverisity
design in which both instances are within the SoR. Therefore,
system failure will occur when both instances generate the
same erroneous outputs.

A. Tailoring DIMP to the specific fault model

We can easily adapt DIMP to the new specific fault model.
To do so, we use the pseudo-code in Figure 1 but imposing a
restriction when we create the sets of paths. Since we know
that the probability of some gates to be faulty is zero for
the specific fault model, we now consider only the paths
that contain at least one gate of the gates regarded as more
likely to fail (e.g., due systematic process variations). Thus,
the specialization will ignore parts of the circuit and focus
only on the paths containing the selected gate or set of gates.
We expect this especialized DIMP metric to produce more
accurate diversity results for our specific fault model.

B. Gate Selection

Our fault model requires a mechanism to decide which
specific gates from each circuit we regard as faulty. The
rationale behind this is that, due to process variability, some
gates may be more vulnerable than others since they have

different sizes and electrical properties, and this will also
translate into a systematically higher fault probability. Note
that a specific type of gate is not only determined by the logic
function implemented but also by its strength. The strength of a
gate is associated with its ability to switch a given capacitance
and relates to the transistors’ size used to build it. To model
this, we create a tool that lists a design’s gates and their
number of occurrences. Using this tool, we noticed that most
of the gates appear only once in the designs. Since we want
to have a representative number of occurrences but still want
to select just one gate type, we simply decided to choose the
gate with more instances for each design. We also considered
using the two most occurring gates for two circuits to observe
how the metric will behave with more gate representatives. We
performed three different experiments for these two circuits,
one using both gates and two using one of the gates. Table I
summarizes the gates selected for each circuit. Our working
set is a subset of the ISCAS’89 circuits implemented using the
umc651l (UMC 65nm Low Leakage) technology library and
for three different latency targets (1, 0.6, and 0.3 ns).

1V. EVALUATION
A. Methodology

We have used the FALLES Fault Injector from [10] for
the validation. However, first, we have modified some of his
parameters. In particular, we have modified the fault injection
to allow the injection to be either a stuck-at 1 or a stuck-at
0, and forcing the faults to be injected at the beginning of the
simulation to have a more predictable behavior that we can
use to validate DIMP. Table II shows the ISCAS circuits we
have employed for this fault injection campaign.

FALLES Fault Injector is the tool in charge of performing
the fault injection, launch the simulation, and analyze the
results. The analysis phase consists of comparing the results
of fault-injection with the Golden Run!. Finally, the FALLES
Fault Injector will generate a huge file reporting all the
erroneous outputs of the simulated design.

According to our system model, we must match the cases
where a common cause failure appears. This is, when both
designs created the same erroneous outputs with the same
conditions (same input values). Following, we have extended
the FALLES Fault Injector tool with a new phase, which
performs the comparison between two experiments reports.

Due to the size of both input files, processing them is a
heavy job. However, one of the restrictions of the matching
is that errors must appear under the same input values for a
given error. We only need to consider those errors that were
produced with the same input values. Thus, one easy way to
parallelize the work consists of splitting the errors based on
the input values producing them.

In order to perform this task, we created a C++ tool that runs
on a parallel cluster. This tool receives two analysis reports
from the FALLES Fault Injector analysis phase and replicates

!Golden Run is an execution without errors. In this context, it is used to
be compared with other executions to find errors.

Circuit 0.3 0.6 1.0
Gate Filtered | Num Gates | % of total gates | Num Gates | % of total gates | Num Gates | % of total gates

ND2M2W 28 4.90% 44 9.57% 38 12.62%
s1196 INVM2W 28 4.90% 48 10.43% 22 7.31%
both 56 9.81% 92 20.00% 60 19.93%
ND2M2W 39 6.29% 59 12.04% 34 10.97%
51238 INVM2W 30 4.84% 26 5.31% 34 10.97%
both 69 11.13% 85 17.35% 68 21.94%
s1488 ND2M2W 56 10.67% 47 9.29% 30 8.98%
51494 ND2M2W 51 8.89% 23 4.47% 28 7.98%
s386 NR2M2W 8 7.14% 7 6.25% 11 15.49%

TABLE I: Selected gate for each circuit and percentage respect to the total

the files for each worker thread. Then, using MPI (Message
Passing Interface) as a parallel programming model, the master
thread assigns to the workers the errors they must analyze (by
giving them the input values they need to search for). Matching
is then done in parallel by all the workers:

1) Read their private copy of the input files and select only
the errors assigned.

2) Perform the matching between the two experiment re-
ports.

3) Send back a message to the master with the information
of how many matches they found and the total number
of errors considered.

4) The master collects information from all the workers and
calculates the final value.

ISCAS’89 Circuit | Inputs | Outputs
s1196 16 14
s1238 16 14
s1488 10 19
s1494 10 19
s386 9 7

TABLE II: ISCAS’89 working set

Because we model a hardware redundancy + diversity
design, the evaluation consists of quantifying the number of
cases that faults appearing in both designs could lead to
a system failure. Following the fault model, the faults will
be injected on both instances of a specified gate. Since we
simulate each design separately, after the injection phase,
we perform a matching that pairs the cases with the same
input values leading to the same erroneous output. Finally, we
calculate the fraction between the errors paired against all the
errors produced.

The simulation starts with the injection performed at in-
stance 0. Particularly, the injections performed are stuck-at 1
fault. Then the simulation runs during 20ns of simulated time
to allow all the signals to be propagated. We repeat this process
for all the possible inputs (2" cases, n number of inputs). We
cannot use all the circuits from ISCAS’89 because simulations
increase exponentially with respect to the number of input
signals a circuit has. Furthermore, for each possible input,
we perform a fault injection simulation for all the design’s
possible injection points.

Once simulations are finished, the analyzer phase of the
FALLES Fault Injector reports the errors found compared

to the Golden Run. Since the file contains the injections
done on all the possible injection points, we must filter all
the simulations whose injection point was a different gate
than the ones selected. With the filter process, we eliminate
some of the unnecessary data reported by the FALLES Fault
Injector to reduce the files’ size. Note that due to the high
amount of required injections, reducing the amount of tracked
information is crucial to keep the problem tractable. In fact,
we only save for each error: the timestamp of the error, the
input values, and the erroneous output value.

After the previous process, we run our matching tool on a
parallel cluster to perform the matching. Because our model
is a hardware redundancy + diversity design, we will match
those errors that have the same input and output values, which
are the ones that can lead to a common cause failure, since are
those not detectable by the output checking (or comparison)
mechanism. In order to parallelize the work, we divide the
inputs between the available workers, so each worker has to
analyze the errors of % inputs, where w is the number of
workers and n the number of inputs of the design. Notice that
there is no work balancing since we do not know a priori
the number of errors reported for each input. Even with the
parallelization, this final step can take up 2 days in our cluster
setup, mostly due to the large file sizes.

After the matching phase, we are ready to compute the final
value. The value consists of a rate between the number of
errors that we matched divided by the total number of errors
produced. This formula can be seen as an approximation of the
Architectural vulnerability factor on our model, considering
we divide the number of errors that can lead to the system
failure by all the errors produced by the injections.

1) Results: A summary of the results obtained with the
experiments is shown in Table III. We have divided the results
for each circuit and gate filtered. For each comparison, we have
the values for the generic DIMP, which are the same shown
in Section II, plus the values for the specialized DIMP and
the matching percentage from the fault injection. We expect
to have the highest percentage of matching for the less diverse
circuits. Additionally, we should expect the specialized DIMP
results to be more precise than the regular DIMP metric and
follow the mentioned trend more clearly.

In general, Specialized DIMP results still follow the pattern
seen in the generic DIMP metric, which is that the lowest
values are on the 0.3 vs 0.6 pairs and the highest on 0.3 vs 1.0

CIRCUIT + Gate/s selected Generic DIMP | Specialized DIMP | Matching percentage | Matching percentage after filtering
s1196
0.3~0.6 0.879962 0.699909 63.25% 1.36%
Gate: ND2M2W 0.3~1.0 0.989662 0.987574 60.88% 0.23%
0.6~1.0 0.987646 0.972088 62.26% 1.61%
0.3~0.6 0.879962 0.596522 71.30% 1.04%
Gate: INVM2W 0.3~1.0 0.989662 0.964201 60.74% 0.06%
0.6~1.0 0.987646 0.935969 63.31% 1.03%
0.3~0.6 0.879962 0.667136 70.13% 0.97%
Gate: INVM2W + ND2M2W | 0.3~1.0 0.989662 0.983005 68.19% 0.23%
0.6~1.0 0.987646 0.967317 68.60% 2.61%
s1238
0.3~0.6 0.881975 0.529878 39.42% 0.66%
Gate: ND2M2W 0.3~1.0 0.979199 0.956967 34.43% 7.26%
0.6~1.0 0.976734 0.936694 62.73% 3.67%
0.3~0.6 0.881975 0.628794 64.98% 0.15%
Gate: INVM2W 0.3~1.0 0.979199 0.982548 52.54% 0.27%
0.6~1.0 0.976734 0.977272 55.70% 0.17%
0.3~0.6 0.881975 0.573767 61.13% 0.26%
Gate: INVM2W + ND2M2W | 0.3~1.0 0.979199 0.968309 54.56% 0.11%
0.6~1.0 0.976734 0.957104 65.82% 0.18%
s1488
0.3~0.6 0.76609 0.673546 43.95% 3.37%
Gate: ND2M2W 0.3~1.0 0.988728 0.901524 34.48% 3.08%
0.6~1.0 0.976887 0.794531 39.41% 5.43%
s1494
0.3~0.6 0.838476 0.880282 32.33% 0.13%
Gate: ND2M2W 0.3~1.0 0.952615 0.923454 35.39% 2.90%
0.6~1.0 0.936673 0.932814 39.81% 1.61%
386
0.3~0.6 0.821197 0.71831 58.31% 12.56%
Gate: NR2M2W 0.3~1.0 0.968137 0.879121 55.43% 0.22%
0.6~1.0 0.935917 0.820628 62.78% 0.74%

TABLE III: We have from left to right from each pair of circuits, Generic DIMP, Specialized DIMP, and the last two columns
show the matching percentage from the fault injection. First the initial one, and the rightmost after the aliasing removal.

pairs. We believe that both metrics have similar results due to
the selection of gates: since we selected the most representative
gates of the circuit, the results are similar. Notice that the
values of the 0.3 vs 0.6 pairs are lower than on the generic
DIMP, because now we consider paths that at least have one
gate in common, the selected one. Therefore, overlapping will
never be 0 on those paths, except when we run out of paths
from one of the circuits and the other one still has unmatched
paths.

As mentioned before, one should expect matching percent-
ages to be higher when the DIMP values are close to O,
since we have lower DIMP values when gates across paths
are “similar” in both designs. More precisely, in the case of
specialized DIMP, paths containing the potentially erroneous
gates are analyzed and the rest of the design is ignored.
Considering we know in advance the potentially erroneous
gates, we also know that the paths analyzed with specialized
DIMP are the ones that will traverse the erroneous signal.
Therefore, lower values of specialized DIMP will indicate that
the mentioned paths are very similar and, thus, will potentially
have similar erroneous outputs.

It is important to remark that matching percentages mea-

sured are very high for all circuits (lowest value is above
30%). Thus, this means that at least 1 out of every 3 injections
can be matched and potentially lead to a system failure (in
these particular designs). This is a very relevant result and can
estimate how important it is to have diverse implementations
to face common case faults since the percentage of matching
in identical designs will be even higher.

In summary, we cannot generally see a clear correlation
between DIMP, neither the generic nor the specialized, and the
matching percentage. Only in three cases (s1196-INVM2W,
s1488-ND2M2W, and s1238-INVM2W) the behavior is the
one expected. In that respect, in the next section, we try to
understand the reason for this and propose different approaches
to improve the results.

B. Removing the aliasing

As shown before, our metric does not fit the needs of the
specified fault model since we cannot correlate the behaviour
seen in the matching percentages with the values obtained
neither from DIMP nor the specialized DIMP. Therefore, we
need to reconsider all the steps taken and try to identify the
reason why we are obtaining such results.

Our hypothesis are that either (1) specialized DIMP is
not well suited for the particular fault model or that (2)
experiments are not representative enough, or (3) both of them.

If we start with 1, considering that the specialized DIMP
algorithm is wrong, still cannot explain per se why the generic
DIMP, which has proved to behave correctly, cannot correlate
with the results. Although the regular DIMP implementation
is more generic, we expect at least some degree of correlation,
but this is not the case. Furthermore, the results of the
matching seem to have different patterns for each circuit. Thus,
we consider that we are having some form of noise or aliasing
in our results that makes results not to be consistent across
circuits, thus considering hypothesis number 2.

Surprisingly, matching percentages are enormous, being
32% the lowest value. Meaning, that almost 1 out of 3 errors
can potentially cause a system failure. We believe that this is
again, because of the aliasing since we are comparing faults
that are injected at gates belonging to different paths and,
therefore, DIMP quantification is not considering that effect.
Note that DIMP metric is computed on a per-path basis, and
therefore, matching errors originated at different paths can
only contribute to introducing noise to the obtained results.

In order to remove this aliasing, we introduce a new filter
or constraint in the matching process. In fact, we impose to
the matching of errors that injections belong to gates that
are in the same path. Now, when applying the filter after
the FALLES Fault Injector tool, we must save the path in
which the injection was made to filter out this result. With
this new condition, we expect the noise within the matching
percentages to be reduced and to have a better correlation with
the specialized DIMP.

1) Results: Looking at the results shown at the last column
of the Table III, the first thing we see is that, as expected,
the new restriction has reduced the matching percentages
significantly, being now 12.56% the highest value among all
the circuits. However, despite that, results are still inconsistent
across different circuits. The expected behavior can only be
observed in 3 out of 9 experiments (s1196-INVM2W, s1238-
INVM2W ND2M2W and s386-NR2M2W), which means that,
although we have removed the inter-paths aliasing, we cannot
match the specialized DIMP with the results yet.

We have also evaluated some new experiments where we
used two gates at the same time. Unfortunately, these results
are inconsistent since only one of them matches the expected
behavior.

V. CONCLUSIONS

Hardware redunancy is widely used in safety-related mi-
crocontrollers to meet the standard requirements of the high-
est integrity levels. However, hardware redundancy per se
is susceptible to common cause faults, which can produce
failures. In order to avoid these failures, diversity is required.
Unfortunately, diversity is a property difficult to evaluate. In
this work, we have used a previously proposed diversity metric
called DIMP, and try to specialize it to a particular fault
model (systematic defects due process variation). Systematic

faults are becoming more relevant as the transistor’s size keeps
shrinking and more transistors are added to a single chip. After
analyzing the fault model, we have modified the original DIMP
metric to weigth the importance of certain gates that are more
susceptible to systematic faults.

Despite our efforts in finding a correlation between the
specialized DIMP and the percentage of matching reported by
our evaluation method, we have failed to show the expected
correlation. We have deeply investigated the reasons for that,
but we think they are related to the following causes. For the
generic DIMP, diversity is computed on a per path basis, and
the particular fault-model we have employed in this chapter
is not suitable for this restriction. In that respect, we have
specialized DIMP to filter on a per-path basis and failed to
show the expected behavior. Our intuition here is that after
filtering out so many gates — the ones not belonging to the
path and the ones not having a specified gate — and also having
in mind that the circuits that we were able to evaluate are
the smallest ones, the remaining parts of the circuits are too
small to provide any meaningful result. We plan to perform
modifications to our evaluation method to solve that limitation.
However, we leave this as future work.

ACKNOWLEDGEMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement no. 871467. This work has also been partially
supported by the Spanish Ministry of Economy and Compet-
itiveness (MINECO) under grant PID2019-107255GB.

REFERENCES

[1] Freescale Semiconductor, “Qorivva MPC5643L microcontroller data
sheet. rev. 9,7 2013.

[2] Infineon, Tricore 1. 32-bit Unified Processor Core v1.3, October 2005.

[3] S. Mitra, N. Saxena, and E. McCluskey, “A design diversity metric
and analysis of redundant systems,” IEEE Transactions on Computers,
vol. 51, no. 5, 2002.

[4] S. Mitra, N. Saxena, and E. McCluskey, “Techniques for estimation of
design diversity for combinational logic circuits,” in DSN, 2001.

[5] S. Alcaide, C. Hernandez, A. Roca, and J. Abella, “DIMP: A low-Cost
Diversity Metric based on circuit Path analysis,” in Proceedings of
the 54th Annual Design Automation Conference 2017, ser. DAC ’17.
New York, NY, USA: ACM, 2017, pp. 45:1-45:6. [Online]. Available:
http://doi.acm.org/10.1145/3061639.3062231

[6] F. N. Taher, A. Balachandran, and B. Carrion Schafer, “Learning-
based diversity estimation: Leveraging the power of high-level synthesis
to mitigate common-mode failure,” in 2019 IEEE 37th International
Conference on Computer Design (ICCD), 2019, pp. 460-467.

[7] F. N. Taher, M. Joslin, A. Balachandran, Z. Zhu, and B. C. Schafer,
“Common-mode failure mitigation: Increasing diversity through high-
level synthesis,” in 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), 2019, pp. 1563-1566.

[8] M. R. Babu, F. N. Taher, A. Balachandran, and B. Carrion Schafer,
“Efficient hardware acceleration for design diversity calculation to
mitigate common mode failures,” in 2019 IEEE 27th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2019, pp. 267-270.

[9] Wikipedia, “Longest common subsequence problem — wikipedia,
the free encyclopedia,” 2017, [Online; accessed 13-Jan-2021].
[Online]. Available: https://en.wikipedia.org/wiki/Longest_common_
subsequence_problem

[10] J. Espinosa, C. Hernandez, J. Abella, D. de Andres, and J. C. Ruiz,
“Analysis and rtl correlation of instruction set simulators for automotive
microcontroller robustness verification,” in 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC), 2015, pp. 1-6.

